



## Cambridge International AS & A Level

CANDIDATE  
NAME



CENTRE  
NUMBER

|  |  |  |  |  |
|--|--|--|--|--|
|  |  |  |  |  |
|--|--|--|--|--|

CANDIDATE  
NUMBER

|  |  |  |  |
|--|--|--|--|
|  |  |  |  |
|--|--|--|--|



### MATHEMATICS

9709/13

Paper 1 Pure Mathematics 1

October/November 2024

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

### INSTRUCTIONS

- Answer **all** questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do **not** write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

### INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [ ].

This document has **20** pages. Any blank pages are indicated.



1 An arithmetic progression has fourth term 15 and eighth term 25.

Find the 30th term of the progression.

[3]





## 2 Find the exact solution of the equation

$$\cos \frac{1}{6}\pi + \tan 2x + \frac{\sqrt{3}}{2} = 0 \text{ for } -\frac{1}{4}\pi < x < \frac{1}{4}\pi.$$

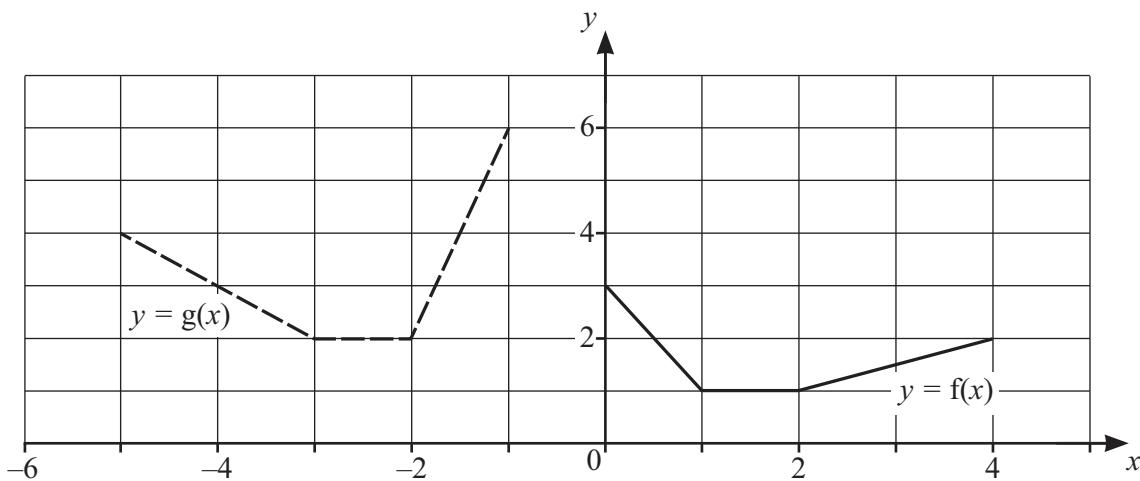
[2]





3 (a) Find the coefficients of  $x^3$  and  $x^4$  in the expansion of  $(3 - ax)^5$ , where  $a$  is a constant. Give your answers in terms of  $a$ . [3]

(b) Given that the coefficient of  $x^4$  in the expansion of  $(ax+7)(3-ax)^5$  is 240, find the positive value of  $a$ . [3]






4 Solve the equation  $4 \sin^4 \theta + 12 \sin^2 \theta - 7 = 0$  for  $0^\circ \leq \theta \leq 360^\circ$ .

[4]



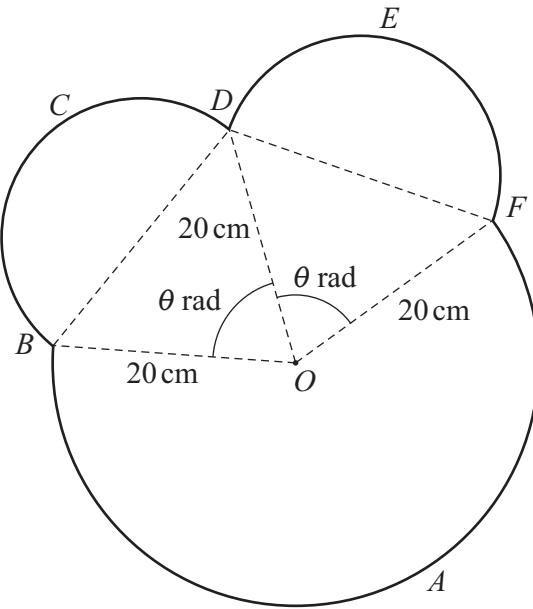


In the diagram, the graph with equation  $y = f(x)$  is shown with solid lines and the graph with equation  $y = g(x)$  is shown with broken lines.

(a) Describe fully a sequence of three transformations which transforms the graph of  $y = f(x)$  to the graph of  $y = g(x)$ . [6]

(b) Find an expression for  $g(x)$  in the form  $af(bx+c)$ , where  $a$ ,  $b$  and  $c$  are integers. [2]






6 The first term of a convergent geometric progression is 10. The sum of the first 4 terms of the progression is  $p$  and the sum of the first 8 terms of the progression is  $q$ . It is given that  $\frac{q}{p} = \frac{17}{16}$ .

Find the two possible values of the sum to infinity.

[5]





The diagram shows a metal plate  $ABCDEF$  consisting of five parts. The parts  $BCD$  and  $DEF$  are semicircles. The part  $BAFO$  is a sector of a circle with centre  $O$  and radius 20 cm, and  $D$  lies on this circle. The parts  $OBD$  and  $ODF$  are triangles. Angles  $BOD$  and  $DOF$  are both  $\theta$  radians.

(a) Given that  $\theta = 1.2$ , find the area of the metal plate. Give your answer correct to 3 significant figures. [5]





DO NOT WRITE IN THIS MARGIN

(b) Given instead that the area of each semicircle is  $50\pi\text{ cm}^2$ , find the exact perimeter of the metal plate. [5]





8 (a) Express  $3x^2 - 12x + 14$  in the form  $3(x+a)^2 + b$ , where  $a$  and  $b$  are constants to be found. [2]

The function  $f(x) = 3x^2 - 12x + 14$  is defined for  $x \geq k$ , where  $k$  is a constant.

(b) Find the least value of  $k$  for which the function  $f^{-1}$  exists. [1]

.....

.....

.....

For the rest of this question, you should assume that  $k$  has the value found in part (b).

(c) Find an expression for  $f^{-1}(x)$ . [3]





(d) Hence or otherwise solve the equation  $ff(x) = 29$ .

[3]





The diagram shows the curves with equations  $y = x^3 - 3x + 3$  and  $y = 2x^3 - 4x^2 + 3$ .

(a) Find the  $x$ -coordinates of the points of intersection of the curves.

[3]





**(b)** Find the area of the shaded region.

**(b)** Find the area of the shaded region. [4]





10 Points  $A$  and  $B$  have coordinates  $(4, 3)$  and  $(8, -5)$  respectively. A circle with radius 10 passes through the points  $A$  and  $B$ .

(a) Show that the centre of the circle lies on the line  $y = \frac{1}{2}x - 4$ .

[4]





(b) Find the two possible equations of the circle.





11 The equation of a curve is  $y = kx^{\frac{1}{2}} - 4x^2 + 2$ , where  $k$  is a constant.

(a) Find  $\frac{dy}{dx}$  and  $\frac{d^2y}{dx^2}$  in terms of  $k$ .

[2]

(b) It is given that  $k = 2$ .

Find the coordinates of the stationary point and determine its nature.

[4]

DO NOT WRITE IN THIS MARGIN





(c) Points  $A$  and  $B$  on the curve have  $x$ -coordinates 0.25 and 1 respectively. For a different value of  $k$ , the tangents to the curve at the points  $A$  and  $B$  meet at a point with  $x$ -coordinate 0.6.

Find this value of  $k$ .

[6]





## Additional page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.





DO NOT WRITE IN THIS MARGIN





---

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at [www.cambridgeinternational.org](http://www.cambridgeinternational.org) after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

